How to bring tech and making into any classroom! (1/4)

Turns out Ms. Frizzle from The Magic School Bus had it right all along! In the era of the Next Generation Science Standards, there is a great deal of evidence that experiential and project-based learning are effective approaches to education. As described in the Cambridge Handbook of Learning Sciences, project-based classrooms provide opportunities for students to “investigate questions, propose hypotheses and explanations, discuss their ideas, challenge the ideas of others, and try out new ideas.” All of this leads to higher test scores than in traditional classrooms.
While we educators may lack the magic necessary to shrink our bodies or travel through the solar system, technology can be an excellent, “magic-like” tool for teaching project-based learning across a wide variety of subjects. When implemented with care and intention, electronics and tech can enhance and expand the realm of possibilities, providing students with direct, hands-on experience of phenomena. A handful of carefully chosen equipment and materials provide an open-ended platform for endless variations of creativity, application, and exploration.
One of the major obstacles in getting started is figuring out what, and how much, to choose. The plethora of options can be daunting and it is not always obvious how to incorporate into a classroom. Here are four principles to help guide you as you make lesson and product choices:
1. Use what you have;
2. Let the students lead (peer-to-peer and even peer-to-teacher education);
3. Broken is better; and
4. Pass it on!
The remainder of this article will expand on the first principle: Use what you have. We will publish more in-depth articles on the remaining principles in the weeks to come, so stay tuned!
Principle 1: Use what you have.
Whether you are looking to teach history or robotics, there are many learning opportunities within everyday materials, particularly when paired with “smart” devices like computers, microcontrollers, or other Integrated Circuits (“ICs”).
Investing in an appropriate microcontroller* for your classroom gives your students more diverse options for projects and invites cross-disciplinary learning opportunities, a key foundation of NGSS. Microcontrollers can add coding to art, and art to coding. If you need some help choosing an effective microcontroller for your classroom, here’s an overview of some common, beginner-friendly microcontrollers.
Free or inexpensive components can be used in alternative ways: LEDs are also light sensors, motors generate electricity when spun, and speakers can be used as a microphone! Finding alternative uses for parts offers students a fun challenge and is a great way to explore connections across fundamental phenomena: Why is a motor also a generator? What does this tell us about how electricity and magnetism work together?
Encourage your students to ask deeper questions and look for connections.
Is there a closet full of old computers, telephones, printers, etc? Perfect! Old tech is often easier to understand because the pieces inside are larger and easier to see than in newer technology. Larger parts are also easier to harvest, or pull out for closer examination and/or use in other projects.
Guide the students in taking apart unused devices. If it’s broken, can the students figure out why? Is it possible to fix or hack it to do something different? If not, how could the students use the parts in new ways? What parts might the students harvest for other projects?
Here is a list of some parts that can be harvested without specialized tools and used in a wide variety of projects:
  • Motors
    • Motors can be used in a wide variety of projects including robotics, puppet shows, art projects, and creative music-making. This is a wonderful alternative to traditional robotics programs as it allows for a wider variety of ingenuity and a deep understanding of how motors function.
    • There are different types of motors that require different signals to turn on: DC motors, stepper motors, and servo motors are the most common. DC motors can be powered directly with a battery, while stepper motors will require a more finely tuned signal from a computer or microcontroller. Unsure what type of motor you discovered? Use three or four AA batteries or a 9V battery to touch the motor connections and explore how and when it moves.
  • Speakers
    • From special effects to science experiments, sound is exciting! Harvested speakers offer the opportunity to observe how sound waves are generated, how sound travel through different materials, and how waves move in general.
    • Connect a 9V battery to the speaker terminals to move and “beep” it, or use the speaker with a microcontroller and/or other amplifier circuit to create instruments, sound effects, and music. Speakers can also be used as an input when connected to an audio amplification circuit.
  • Electromechanical parts like switches, pushbuttons, relays, and connectors
    • Switches and buttons provide a way for us to interact with circuits and electronics. They can be used to explore analog and digital signals, build logic gates, create cause-and-effect machines, and design communication systems, as well as many other possibilities.
    • A relay is an electronic switch for two separate circuits that make a “click” sound when activated. Relays are one way to control motors with a lower-power circuit.
    • Electrical connectors come in an astounding variety of types, shapes, mechanical and electrical connection mechanisms. They help make the electronics sturdier and easier to store, transport, and modify. And of course, they can be used to add flair to projects sans electricity!
  • Sensors
    • Many electronics have infrared (IR) transmitters and/or receivers, which can be hacked to build remote controls for robots and other projects. Solar path lights and CD/DVD drives contain light sensors, security lights have passive IR sensors, and many printers have optical encoders!
  • Transistors
    • If you have tech that qualifies as antique, you may be able to find transistors that can be reused (in newer tech, they are so small that they are invisible to the human eye). Observing transistors in older tech is an excellent pathway through computer history, design, and hardware function.
    • If observation of transistors isn’t the educational opportunity you need, they can be used to add autonomy and logic to circuits, or can act as a controller for output devices like lights, speakers, or low-power motors.
  • Mechanical parts like springs, gears, drive shafts, etc.
    • One of the main challenges in doing engineering projects is having make functional gears. Avoid all of that by taking apart a printer and pulling out the mechanical components. Electronic toys that move are another good source for gears and mechanical mechanisms, and can be hacked or “mashed” together in combinations that span delightful and eerie.
A quick note on safety when doing take-aparts:
  • Unplug the electronics and leave unplugged for a minimum of two (2) weeks.
  • Avoid large appliances, microwaves, and ink-jet printers (or just take out the ink cartridges)
  • Always wash hands afterwards. Students should keep food and drink in closed containers and off the tables.
  • Do not force anything open or closed. The biggest hazard with take-apart activities are sharps caused by broken parts when someone tries to pull a case open without properly removing all the screws.
Even without harvesting parts, seeing the inside of electronics is an effective and memorable way to explore how these devices are made and how they function. Once students see the insides of a few different devices, they will quickly identify connections across all electronics and have a better understanding of the “magic” behind the tech.
Aside from electronics, there are tons of useful and versatile materials all around us! Cardboard, paper, plastic containers, pipe cleaners, brads, clothespins, and office supplies are incredibly versatile. Use these materials in conjunction with the tech you have available, or as stand-alone project-based lessons in science, math, history, and other subjects. How might your students explore various ways to build moving mechanisms with cardboard and paper brads? How might your students use colored paper to explore how light is absorbed and reflected? How might your students explore and visualize sound?
Often, the key to incorporating project-based learning is providing the appropriate challenge. The best challenges allow for a wide variety of creations, are accessible and relevant to the students’ lives, and are as fun to mess up as they are to achieve! Challenges do not need to be binary or only one goal or path-oriented. The most effective challenges are those with the most room for surprises and “broken” rules.
With all of that said (well, written), the only thing you really need to remember is that you can do a lot, including incorporating and meeting NGSS, with what you already have. Look around, look inside, and look for connections!
Please reach out if you have any questions about this principle or if you’re looking for ideas in getting started. Happy learning!
* Wait wait wait… what is a microcontroller? Excellent question! A microcontroller is a “simple computer” that runs one program at a time. Examples of microcontrollers are Internet routers, TV remotes, and video game controllers.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.