FoxBot Founder/CEO Featured by Gadegetronix!

Gadgetronicx is an educational website and online community of electronics enthusiasts who share their creations, ideas, and tips and tricks for working with electronics and bringing ideas to life. Founded in April 2012 by Frank Donald and powered by many Enthusiasts around the world, members can learn from and share their projects with readers across the globe.

Recently Gadgetronicx started an interview series called “Meet the Motivators” which interviews makers around the world who are educating and inspiring others. We were so excited that they selected our founder and CEO, Jen Fox, as their first Motivator! Gadgetronicx collected questions from their member base which Fox answered. Here are some excerpts of the interview:

Q1: What you enjoy most? Being a Maker or Educator ?

Both! Being a maker helps me be a more effective educator because it puts me in the position of a student. And being an educator helps me be a better maker because students teach me things, inspire me, ask great questions that make me curious to know more, and help me figure out what projects folks are interested in. It is a beautiful and perfect blend ?

Q4: Why JenFoxbot ? 

Hah good question! My actual last name is “fox” but it is a hilariously common name. Which meant all of the standard handles I was trying to get were taken! So randomly one day when I was in college I said “oh I dont know jenfoxbot” and it was available! So I gobbled up all the emails and usernames I could get my hands on and it stuck! Fun fact: the first name of my company was “foxtronics”, but I switched it to “foxbot industries” because allows me to have a broader scope and mission. And it just sounds better!

Q7: Interesting Raspberry Pi project ever built ?

The pi is so awesome!! I love that it is an affordable computer, which makes it a powerful way to build custom electronics projects. Personally, I am fascinated with the ability to convert a pi into a local access point! For my Halloween costume last year i was a “server” — I used a Pi to host a local webpage where people could order candy, and then I delivered it to them ? I want to dive into that project again at some point and make a personal and local chat app for places that dont have cell service! Here is a link to that project: http://foxbotindustries.com/turn-pi-local-server/

Q8: Modern Education system is so flawed in my view, Your opinion ? 

Hah. That is certainly a big topic! Yes, there are many problems in the US educational system. The current method of standards implementation has resulted in teachers being forced to “teach to the test”, which means students are largely memorizing rather than understanding. Personally, I believe this has contributed to a view that science is a collection of facts (which one could then choose to ignore), rather than an understanding that science is a process of asking questions and seeking answers. I am working hard to help provide standards aligned curriculum that teaches understanding. It is very hard for educators to do all of the things, especially with huge class sizes and little resources. So I am trying to make their lives easier and better by creating more effective curriculum and educational approaches to learning. My hope is that once enough teachers adopt a project based method, the school districts, state and federal policies will update

Q9: Advice to budding Electronics Engineers or Enthusiast ?

Practice and get experience in the areas you are interested in and want to learn. Build up/point to a portfolio of projects you have done solo and with groups. Go to job fairs and figure out what you like and don’t like. What do you like doing and where do those jobs exist? Think creatively and talk to people. Be candid about what you want to do and where you are at. Seek mentors in the fields you want to work in and ask for their advice and suggestions for people and companies. And perhaps most important: be well rounded! Learn about humanities, cultures, and history. Talk to and be friends with people who are different than you. Talk to people who will be using the things you create so you can better meet their needs. By understanding the diverse world we live in, we can create better and more effective products!

 

For the full interview, visit the Gadgetronicx website. While you’re there, check out some of their members’ projects to learn more about electronics and tech!

Anti-Facial Recognition Wearable No. 1

Every time we leave our homes, we are photographed and videotaped in public and private spaces. Facial recognition software identifies our unique facial features and can be used to tag us in photos that are taken with or without our consent. This tutorial is about exerting our right to control our personal privacy. It is our choice and our right to decide if we want to be identified by cameras that photograph us in public and private spaces.

There are many approaches to anti-facial recognition makeup/wearables. This is my first approach based on some background research, chatting with fashion-minded friends, and my own personal artistic and electronic interests.

The purpose of this project is to make it more normal (& fun!) to wear privacy enhancing fashion so that if/when it is needed, folks who are using it for legitimate protection are not targets.

Follow along or use this as inspiration for your own anti-facial recognition wearables! If you design your own, pleasepleaseplease share it in the comments so other folks can learn from and be inspired by you!

Difficulty: Easy

Build Time: 1 – 2 hours (+2 hours for glove controller)

Cost: < $15

Quick Overview of Facial Recognition Software

Computer Vision, or “CV” for short, is a software method that breaks down images into a series of black and white pixels, and then attempts to extract meaning from patterns in the pixels. Since human faces have the same characteristics (two eyes, nose, mouth, & chin), these characteristics can be broken down into patterns that a software program can look for.

For example, pupillary distance, or the distance between the pupils of each eye, varies from about 54 to 68 mm for adults – a CV program would look for black pixels separated by that distance range and log those as one layer. There are tons of patterns that a CV program can search for and locate, then go back and analyze the layers together to ensure they match up. All of these values are stored as variables that can be used for comparison with other images.

The more images a CV program analyzes, the better it gets. By comparing CV-found patterns to patterns in existing photos tagged on social media, CV programs may also tag an individual regardless of where that photo was obtained. CV programs are incredibly accurate, can select a face from multiple angles and backgrounds, and can identify a person’s emotions.

Check out CV Dazzle to learn more about anti-facial recognition makeup and other styles!

 

Materials & Tools

Materials

Optional glove controller:

Tools

  • Liquid Latex
  • Scissors
  • Wire Strippers
  • Soldering Iron (recommended for glove controller)
  • Hot glue gun (or other fabric-safe glue)

 

Step 1: Attaching the Flowers

Use the flowers to cover up distinguishing facial features. Eyes, eyebrows, and nose bridge are three primary regions of the face that are used by facial recognition software to identify and tag a face.

1. Cut flower stems off (unless you want ’em on for aesthetic purposes).

2. Pour a small amount of liquid latex into a container.

3. Figure out where you want to put the flower, then dab the base of the flower into the liquid latex. Let it dry for a few seconds, until it feels sticky and less liquid.

Be sparring with this stuff, it can be kinda painful to peel off, especially after 30 flowers.

4. Attach the flower to your skin. BUT FOR REAL THOUGH avoid your hair!! It is a huuuge pain (literally) to get out.

5. Repeat 2 & 3 until your face is adequately covered.

You can check your progress using a Snapchat or Instagram filter: If the filter can’t find your face or looks wonky (like sunglasses on your forehead instead of your eyes) then you’re all set!

 

Step 2: Adding LEDs!

To add freestanding LEDs, grab a coin cell, and push the two LED legs over the coin cell battery sides (longer LED leg on the positive battery side). Dip one side in the liquid latex, let dry for a few seconds, and then smoosh onto your skin just like with the flowers (again, avoiding precious and sensitive hair).

If you’re using the glove controller (see next step), run the LED wires up your arm to behind your ear, holding them in place with rubber bands or hair bands. Arrange how you want the LEDs to point, then pin the wires in place with bobby pins. That should be sufficient to hold them, if not add some liquid latex to the ends of the LEDs.

The LED + coin cell combo should last ~ 12 hrs.

 

Step 3 (Optional): Make a Glove Controller

This is a good option if you want to save battery life or to be able to turn on/off the LEDs. The thumb is the battery case, with conductive thread on the top as the positive connection. The fingers are the positive connections for the LEDs.

This takes ~ 2 – 3 hours to build.

1. Attach wires to the LED(s).

Measure out two (2) wires per LED to span from your head, down your neck, and to your wrist. Add 3″ to this measurement to allow for movement. Cut wires and strip both ends.

Mark the positive side of the LED with a pen, then twist one end of each wire around the LED leads. Solder the LED leads to the wire. Use a red wire, or mark the positive wire with a pen.

If available, use heat shrink tube to make a poke-less connection. Or just coat it in epoxy or hot glue or some other liquid adhesive.

Repeat for each LED you want to add to the glove.

2. Using conductive thread, make the negative side of the circuit: a negative connection for the coin cell and a “ground bar” for the LEDs.

Put on the glove, and mark where the center of the battery will go. Sew about 10 layers of conductive thread over your mark — this is the ground connection for the coin cell battery.

With the thread still attached, sew down to the base of the glove and stitch back and forth until there are a few layers of conductive thread in a line — this is the negative connection for the LED connections.

3. Make a coin cell battery case on the thumb of the glove.

Cut out 1 square of regular fabric, and 1 square of conductive fabric.

Cut a small hole in the regular fabric and then stitch the conductive fabric square over the hole (with regular thread). Run over this a few times since the conductive fabric tends to fray.

Using normal thread, sew 3 of the 4 sides of the regular fabric over the negative connection for the battery, so that it makes a lil’ pouch for the coin cell. (You might want to sew down the 4th side a bit to hold in the battery, or use a safety pin).

4. Attach the positive side of one LED to a glove finger and make a conductive pad.

Sew the positive LED wire onto the glove (regular thread)

Still using regular thread, sew a square of conductive fabric over the stripped end of the wire.

5. Attach the negative side of the LED to the glove ground pad.

Wrap the stripped end of the wire to the conductive thread ground pad and/or use conductive thread to secure it.

6. Repeat 4 & 5 for all LEDs.. or until you run out of fingers.

7. Epoxy or use fabric glue to adhere all of the connections.

 

Step 5: Test & Deploy!

Test your privacy enhancing getup by opening Snapchat or another filter app and check that it can’t identify that there is a face in the image. At the very least, if it does identify a face, be sure that the filter it adds is hilariously broken.

If you want to get real serious, you can download the OpenCV library and test it against your wearable — this is my long-term goal, but for now I’m happy with sticking flowers and LEDs on my face for V1.0.

Stay tuned for more of these anti-facial recognition wearables and please share your awesome creations!

Make a Light-Up Holiday Card!

Light-up cards incorporate two of the best worlds of making (electronics and crafts) with the added bonus of making somebody smile. Heck yes!

Here’s my approach to light-up cards and my favorite recent discoveries: pop-ups and cotton balls.

Read time: ~ 5 min.

Build time: ~ 30 min -1 hr (mostly crafting the card)

Cost: < $5

 

Materials!

Gather up the following materials:

  • One or more LEDs!
  • Copper tape (~ 20″)
  • One coin cell
  • One paper clip
  • One pushpin
  • Colored paper
  • & any other craft materials your creative heart desires!

 

Build the Circuit!

 

 

1. Cut out a pocket for the coin cell.

 

 

 

2. Add copper tape to cardstock!

Stick 2″ of copper tape just above the battery pocket, so that the bottom of the battery rests on top of it. This is the negative (-) side of the circuit.

Stick another 2″ piece of copper tape on the underside of the pocket, so that it touches the top of the battery. This is the positive (+) side of the circuit.

 

3. Add a switch!

Cut a small line at the end of the copper tape, push paper fastener through the slit and hook the paperclip under the paper fastener (it might also help to add copper tape to the end of the paperclip). This makes an “on/off” switch!

 

 

4. Connect the LED!

The longer LED leg connects to the positive side of the circuit. The shorter leg connects to the negative side of the circuit. Be sure that these two sides of the circuit do not cross, or it “shorts” the LED and drains the battery.

 

 

Design & Make the Card!

1. Plan out where the light is going to go!

This is super crucial if you want the light to be in a specific spot, like the top of a tree, as a nose, etc. It’s helpful to make a super simple drawing of what you want before you try, or at least have extra materials on-hand for second (or possibly third) versions. Check all the things before you glue stuff down.

2. Craft the card!

Since it’s the December holiday season, I’m making a bunch of holidays cards for friends, woo! I like incorporating re-used (or upcycled) materials, so for this card I cut out the cover of an old calendar and folded the edges under to make it 3D (oooohhh now we’re gettin’ fancy!).

Another fun option are pop-ups! Cut out thin strips (~ 1/2 inch) and fold them accordion-style, then use ’em to prop up your cutouts and drawings!

3. Add in the LED!

You can either hide the circuit under the cover, or inside the card. For this card, the circuit slips under the cut-out, and the LED, covered by a lot of cotton balls, sticks out the top to light up the clouds!

 

 

Final Touches & Beyond!

Close the switch to the LED and stand in awe at your awesome creation! Write a heart-felt note on the inside and give it to your favorite family member/friend/coworker/neighbor/etc!!

There are tons of other ways to make the LED circuit! The photo to the left shows a method using magnets (ohhhh magnets!). What other ways can you come up with to make the circuit? Post your creations in the comments below!! 😀