(Quick & Easy) Micro:Bit Magic 8 Ball Costume

90s kids unite! And build this super fun, easy, and interactive costume!

Ask a (yes/no) question, shake the Micro:Bit, and it displays a fortune (obviously accurate) to your deepest most pressing questions, like what is life, how do we solve climate change, and why are pineapples so difficult to cut open. Except you’ll do a better job with phrasing your questions as yes/no ūüôā

Anyway….

Here we go!

Read Time: 7 min.

Build Time: < 30 min.

Project Cost: $15 – $20

Materials

  • Micro:Bit¬†
  • 2xAAA Battery Case
  • 2 AAA Batteries¬†(plus some extras if you plan to wear the costume for more than 3 hours)

… Seriously, that’s it!

Oh, and to make it all aesthetically pleasing and on point:

  • Cardboard¬†(like a 4″ x 4″ square)
  • Blue Paint

Step 1: Program the Micro:Bit!

Step 1: Go to www.MakeCode.org and open a new Micro:Bit project.

Step 2: Write a program to display randomly generated messages of your choosing!

Need more info? Here’s a more detailed overview ūüôā

Go to¬†Variables¬†and create a unique variable for each message you want to send (e.g.¬†msg1,¬†msg2, …msg42, etc).

Go to¬†Inputs¬†and drag out the¬†On shake¬†block. In¬†On shake, add “set item to” from¬†Variables,¬†then go to the¬†Math¬†blocks and connect the “pick random 0 to...¬†Change the random number range (i.e. the 2nd number) to reflect the total number of messages you are showing¬†(e.g. if you have 5 messages, the random number range is 0 to 4 because there are 5 possible numbers: 0, 1, 2, 3, 4).

Almost done! Add an “If – Then” from¬†Loops. In the first¬†if, set the condition to:¬†item = 0,¬†then display the first message (“show string” block w/ the variable name for your first message (e.g.¬†msg1)).¬†Recommended to repeat the message at least once ’cause scrolling letters can be hard to read!¬†Repeat the¬†if¬†statement condition for each random number and message, and viola, c’est fini! You can test the code in the simulation on the left side of the screen by clicking the¬†Play¬†button and then¬†Shake¬†(:

When you’re ready, download the code, plug in your Micro:Bit, and then drag the (.hex) file onto the Micro:Bit drive. The code is loaded when the power lights are done flashing!

Step 2: Optional Triangle Cover

Step 1: Make a cardboard triangle & paint it blue!

For most accurate imitation, go for an equilateral triangle (geometry for the win, woot woot!).

Step 2: Cut a 1 in. x 1 in. (2.5 cm x 2.5 cm) hole in the center for Micro:Bit LEDs.

Step 3: Attach Micro:Bit on back of triangle w/ glue or tape.

If using hot glue, avoid the battery and USB connector.

Step 4: Wear it & Share it, pretty bby!

Attach the Micro:Bit (& cardboard combo) to yourself or your clothes! You can use velcro, tape, or hot glue (although probably avoid using this one on your actual skin..) Or make straps w/ string, twine, fabric, etc!

Put on your favorite black outfit & you’re done! Quick & awesome & comfy Halloween costume for the winnnn ūüėÄ

Feel free to ask any questions in the comments section. If you build this or a variation, please share your creations, I’d love to see what you make!!

Build an (easy) Floor Piano!

The household floor piano is a dream no more! The Makey Makey microcontroller¬†makes it super easy (and affordable) to build your very own “foot-strument” out of common household materials.

Grab a Makey Makey kit, some cardboard, and your musician shoes and let’s get building!

  • Difficulty Level: Easy
  • Estimated Build Time:¬†60 minutes
  • Cost: $50 (for¬†Makey Makey kit)

 

 

Materials & Tools

Materials

  • Makey Makey Kit
    • 16 Breadboard Jumper Wires
    • 4 Alligator Clips
  • Cardboard
  • Aluminum Foil
  • Plastic Trash Bag (stretchy is best)
  • Duct Tape

Tools

  • Scissors
  • Hot Glue Gun
  • Measuring Tape or Ruler

 

Build the Piano!

1. Build the piano base.

Cut a cardboard base for your keyboard, then divide it into 8 equally sized rectangles — these are the dimensions for your piano keys!

2. Make the piano keys!

Cut out 8 cardboard rectangles using the base dimensions and paint them white.

3. Build the key triggers for the piano.

Cut 16 cardboard rectangles of equal size or smaller than the cardboard piano keys.

Repeat the following for each pair of key triggers:

  • Cover both cardboard rectangles in aluminum foil.

  • Use copper tape to connect one wire to the aluminum foil¬†on each of the key triggers, then cover the connection in duct tape to secure.

  • Cover one of the rectangles with a piece of the plastic trash bag so that the aluminum foil is completely covered. Secure with duct tape.
  • Sandwich the two key triggers together so that the trash bag is a barrier between the aluminum foil.

 

Connect to the Makey Makey!

1. Connect the wires to the Makey Makey Рone of the wires goes to ground and the other goes to a keypad (doesn’t matter which wire).

2. Test that the Makey Makey is triggered when you put pressure on the cardboard.

3. Tape the key triggers to the bottom of the white cardboard piano keys. Secure them to the piano base with velcro or glue.

4. Connect one of the wires from each of the key trigger to the six header pins on the back of the Makey Makey board and to two of the arrow keys on the front.

5. Connect the other key trigger wires to the Makey Makey ground.

Recommended to connect the ground wires in two groups of 4, then use one alligator clip per each group of 4.

Write the Scratch Program!

We have 8 inputs, which means we can play an entire octave on our floor piano! (Yes, that was intentional).

Your job:¬†Write a Scratch program that plays 8 successive keys starting at middle C (or wherever you prefer your piano octave to start) using the “play note” function. Or you can copy mine in the photo above ūüôā

Aside from the program, just be mindful of what piano key is connected to what Makey Makey pin. It’s easy to get 8 wires a bit mixed up — consider labeling them to save yourself some time (& hair..).

Install & Play!

Consider coating the electrical connections in hot glue. Plug the Makey Makey into your computer, place your floor piano on, well, the floor, and have at it!

Enjoy making beautiful music by stomping on your custom creation.

Simple LED Earrings

FR22YMRI0HYSAV7.MEDIUM

Wearables are an awesome, relatively new extension of circuits. Conductive threads & fabrics make it easy to attach components like LEDs and sensors to clothing/accessories. Plus, they are a super fun introduction to electronics!

These LED earrings were designed b/c I wanted a wearable that was simple, unique, and could be built by-hand w/ available materials. Purchasing all materials adds up to less than $10, and these can be built in ~ 1 hour (although it does take some patience).

For this tutorial I’m assuming you are an electronics beginner. Regardless of your background, I hope this project inspires you to design your own wearable technology or take the basic concepts to the next level ūüôā

FU57BPWI0HYS3BP.LARGE
———————————————————————————–

Step 1: Materials

F7Q64DXI0HYS16T.MEDIUM

— 2¬†LEDs
Fun fact: LEDs on the higher end of the rainbow (red, orange, & yellow) use less power than colors on the lower end (purple, blue, & green).

— 2 Lithium coin cell batteries, 3 V
Mine are non-rechargeable and will probably last for ~20 hours. If you want to make them to last longer, use rechargeable batteries (super expensive but worth it if you want to wear the earrings long-term).

— Thread—¬†Conductive Thread
Used to attach the LED to the battery. Alternatively, you can use wire or anything else that conducts.. like magnets!Also, since conductive thread loops tend to come undone, I hot glued all the knots to hold them together.

— 2 earring backs
— 2 clasps
These act as a switch so the LED can be turned off when not in use. I had some necklace clasps on hand which worked perfectly, but there are tons of options for switches.. all you need is a way to interrupt the flow of electricity.
–Tape
I used conductive tape, but honestly regular tape works just as well.
———————————————————————————–

Step 2: Tools

F1NKAR4I0HYS176.MEDIUM

— Hot glue gun
— Scissors
— Needle
Recommended to get a needle w/ a wide eye b/c the conductive thread has a tendency to fray.
— Optional: wire cutters
Helps w/ cutting the ends of the LEDs.
———————————————————————————–

Step 3: Build it! Pt 1: Wrap the battery.

Screen shot 2014-11-26 at 2.11.34 PM

Wrap the battery w/ 1.5 – 2 feet of (normal) thread. To make it easier, tape the beginning end of the thread to the back of the battery. Leave at least 6 inches of thread at the end.

When finished wrapping, loop the end of the thread under the band and pull tight. Repeat this a few times, then make a knot. Tape the end/thread band down.
———————————————————————————–

Step 4: Build it! Pt. 2: Attach earring back.

F4NL2IGI0HYS16O.MEDIUM

FHGKMR1I0HYS14N.MEDIUM

Loop the 6 in. tail of the the thread band through the hole in the earring back. Use the needle to loop the thread under the band & pull tight, kind of like sewing a button. Repeat at least ten times, or until the thread runs out, then tie a knot.
———————————————————————————–

Step 5: Build it! Pt. 3: Attach the Positive LED Leg.

F0Y3T3CI0HYS17J.MEDIUM

Tie 6 inches of conductive thread to the positive (longer) leg of the LED. Loop the conductive thread through the bottom of the battery thread band and pull through, leaving the LED ~ 1/2 inche (in.) below the battery. Pull the conductive thread down, so it is only touching the front cover (positive side) of the battery.

Loop the conductive thread around the battery thread band at least five times, then tie a knot. Hot glue the conductive thread knots w/ the littlest amount of glue to help hold it in place.
———————————————————————————–

Step 6: Build it! Pt. 4: Attach Clasp.

Screen shot 2014-11-26 at 2.17.42 PM

Attach the clasp (aka switch) to the back of the battery w/ ~ 6 in. conductive threadin the same way the earring back was attached: thread the end of the earring back through the thread band on the battery, above the tape, and pull it tight. Repeat at least five times. Tie a knot and hot glue the thread to hold it in place.
———————————————————————————-

Step 7: Build it! Pt. 5: Attach Negative LED Leg.

Screen shot 2014-11-26 at 2.20.26 PM

Tie the other end of the clasp/switch to 6 in. conductive thread. Tie the end of the conductive thread to the negative, shorter leg of the LED, leaving ~ 1/2 in. from the bottom of the battery. Hot glue the knots.

Connecting the two ends of the clasps helps w/ finding the right length.. or you could use a ruler ūüôā

Be sure that the LED legs and the respective thread/wires do not touch; otherwise the battery is shorted and the LED won’t turn on.
———————————————————————————–

Step 8: Done! Woo!

F974PMGI0HYS1H5.MEDIUM

That’s it! Clean up the mess that is hot glue, snip the ends of the conductive thread and, if you’re not going to put them on right away or take photos, unscrew the clasps.

And have fun dazzling your friends and all that good stuff ūüôā
Note: The reason the green one isn’t as bright is probably because the battery was quite bit older.